Numerical methods for solving the multi-term time-fractional wave-diffusion equation
نویسندگان
چکیده
منابع مشابه
Numerical Methods for Solving the Multi-term Time-fractional Wave-diffusion Equation.
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The ...
متن کاملNovel Numerical Methods for Solving the Time - Space Fractional Diffusion Equation in 2 D ∗
In this paper, a time-space fractional diffusion equation in two dimensions (TSFDE2D) with homogeneous Dirichlet boundary conditions is considered. The TSFDE-2D is obtained from the standard diffusion equation by replacing the first-order time derivative with the Caputo fractional derivative tD γ ∗ , γ ∈ (0, 1), and the second order space derivatives with the fractional Laplacian −(−∆)α/2, α ∈ ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNumerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain
This paper deals with numerical solution to the multi-term time fractional diffusion equation in a finite domain. An implicit finite difference scheme is established based on Caputo’s definition to the fractional derivatives, and the upper and lower bounds to the spectral radius of the coefficient matrix of the difference scheme are estimated, with which the unconditional stability and converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Calculus and Applied Analysis
سال: 2012
ISSN: 1314-2224,1311-0454
DOI: 10.2478/s13540-013-0002-2